Small-Scale ACDM Problems

Federico Lelli (Arcetri Astrophysical Observatory)

Download Slides at *www.lellifederico.com/students*

Largely based on the following review papers:

Bullock & Boylan-Kolchin (2017), ARA&A McGaugh, Lelli, Li, Schombert (2020), IAU Symposium 353 Lelli (2022), Nature Astronomy Lelli (2023), IAU Symposium 379

Testing ACDM at different astronomical scales

Galaxy Scales (~1-100 kpc)

Andromeda (spiral galaxy)

Messier 87 (elliptical galaxy)

Group/Cluster Scales (~1-5 Mpc)

Stephan's Quintet (galaxy group)

Abell 1689 (galaxy cluster)

Cosmological Scales (>100 Mpc)

Small-Scale ACDM Problems

- 1. Missing Satellites
- 2. Cusp vs Core
- 3. Too-Big-To-Fail
- 4. Planes of Satellites

5. Dynamical Regularities

Federico Lelli (Arcetri Astrophysical Observatory)

Small-Scale ACDM Problems

- 1. Missing Satellites
- 2. Cusp vs Core
- 3. Too-Big-To-Fail

"Classical" problems (~25 years old)

4. Planes of Satellites5. Dynamical Regularities

"New" problems (~10 years old)

Federico Lelli (Arcetri Astrophysical Observatory)

Why are these problems interesting?

Baryonic physics inside CDM halos?
Gas cooling, star formation, stellar feedback, etc.

Why are these problems interesting?

Baryonic physics inside CDM halos?
Gas cooling, star formation, stellar feedback, etc.

2. New physics in the dark sector? Self-interacting DM, fuzzy DM, superfluid DM, etc.

Why are these problems interesting?

Baryonic physics inside CDM halos?
Gas cooling, star formation, stellar feedback, etc.

2. New physics in the dark sector? Self-interacting DM, fuzzy DM, superfluid DM, etc.

New dynamical laws rather than DM?
Milgromian dynamics (MOND), modified gravity, etc.

Missing Satellites Problem (Mass Function Problem)

Federico Lelli (Arcetri Astrophysical Observatory)

The Missing Satellites Problem

Federico Lelli (Arcetri Astrophysical Observatory)

Small Scales Problems for ACDM Cosmology

The Halo Mass Function

Federico Lelli (Arcetri Astrophysical Observatory)

Stellar versus Halo Mass Function

Federico Lelli (Arcetri Astrophysical Observatory)

Stellar versus Halo Mass Function

Federico Lelli (Arcetri Astrophysical Observatory)

The Stellar Mass – Halo Mass Relation

Abundance Matching: "brute-force" method that require no knowledge of baryonic physics

Given a volume of the Universe (say 1 Gpc³), assign the most massive halo (in a simulation) to the most massive galaxy (in a survey).

Federico Lelli (Arcetri Astrophysical Observatory)

The Stellar Mass – Halo Mass Relation

Abundance Matching: "brute-force" method that require no knowledge of baryonic physics

Given a volume of the Universe (say 1 Gpc³), assign the most massive halo (in a simulation) to the most massive galaxy (in a survey).

Federico Lelli (Arcetri Astrophysical Observatory)

Abundance Matching ↔ Missing Satellites

Federico Lelli (Arcetri Astrophysical Observatory)

Possible Solutions to the Missing Satellite (Mass Function) Problem

 Baryonic physics: stellar & AGN feedback somehow reduce the amount of collapsed baryons (stars & cold gas) in galaxies → most baryons are in a hot "invisible" form (missing baryons)

Possible Solutions to the Missing Satellite (Mass Function) Problem

 Baryonic physics: stellar & AGN feedback somehow reduce the amount of collapsed baryons (stars & cold gas) in galaxies → most baryons are in a hot "invisible" form (missing baryons)

2. Warm Dark Matter (WDM): reduce power on small scales → reduce number of predicted low-mass DM halos

Smaller number of sub-halos in WDM

Federico Lelli (Arcetri Astrophysical Observatory)

Possible Solutions to the Missing Satellite (Mass Function) Problem

- Baryonic physics: stellar & AGN feedback somehow reduce the amount of collapsed baryons (stars & cold gas) in galaxies → most baryons are in a hot "invisible" form (missing baryons)
- 2. Warm Dark Matter (WDM): reduce power on small scales → reduce number of predicted low-mass DM halos
- 3. Modified gravity: need to re-assess the whole problem of galaxy formation and derive the stellar mass function (not done yet!)

2. Cusp vs Core Problem(Rotation Curves Problem)

Federico Lelli (Arcetri Astrophysical Observatory)

Rotation Curves of Disk Galaxies

Distribution of baryons (gas & stars)

Federico Lelli (Arcetri Astrophysical Observatory)

Rotation Curves of Disk Galaxies

Distribution of baryons (gas & stars)

Velocity along the Line of Sight (LoS)

Federico Lelli (Arcetri Astrophysical Observatory)

Deprojection from sky-plane to galaxy-plane

For a thin disk $(V_{rot} \gg \sigma_V)$ projected on the sky: $V_{LoS}(x, y) = V_{sys} + V_{rot}(R) \sin(i) \cos(\theta)$ $\cos(\theta) = f(x_0, y_0, PA) \rightarrow \text{Disk Geometric Parameters}$

Federico Lelli (Arcetri Astrophysical Observatory)

Small Scales Problems for ACDM Cosmology

Mass Models of Disk Galaxies

- Solve (numerically) Poisson's equation in cylindrical coordinates for each component (i = stars or gas):

 $\nabla^2 \Phi_i(\boldsymbol{R}, \boldsymbol{z}) = 4 \pi G \rho_i(\boldsymbol{R}, \boldsymbol{z})$

Small Scales Problems for ACDM Cosmology

Federico Lelli (Arcetri Astrophysical Observatory)

Mass Models of Disk Galaxies

- Solve (numerically) Poisson's equation in cylindrical coordinates for each component (i = stars or gas): $\nabla^2 \Phi_i(R, z) = 4 \pi G \rho_i(R, z)$
- Find expected circular velocity in disk mid-plane: $\frac{V_i^2(R, z=0)}{R} = -\frac{\partial \Phi_i(R, z=0)}{\partial R}$

Federico Lelli (Arcetri Astrophysical Observatory)

Mass Models of Disk Galaxies

- Solve (numerically) Poisson's equation in cylindrical coordinates for each component (i = stars or gas): $\nabla^2 \Phi_i(R,z) = 4 \pi G \rho_i(R,z)$ - Find expected circular velocity in disk mid-plane: $V_i^2(R, z=0)$ $\partial \Phi_i(R, z=0)$ ∂R R - Sum over gravitational fields ($g_i = V_i^2/R$): $V_b^2(R) = \mathbf{Y} \mathbf{Y} \mathbf{V}_a^2(R) + \mathbf{Y}_a V_a^2(R)$ Y = M/L estimated from stellar population models Y_{a} = known for HI from atomic physics (spin-flip) + small corrections for H₂, He, heavier elements

Federico Lelli (Arcetri Astrophysical Observatory)

Mass Model with a Dark Matter Halo

- Assume spherical DM halo profile: $\rho_{DM} = \rho(r; \rho_c, r_c)$
- Add it together with the baryons: $V_c^2 = Y \star V_{\star}^2 + Y_g V_g^2 + V_{DM}^2(\rho_c, r_c)$

Small Scales Problems for ACDM Cosmology

Federico Lelli (Arcetri Astrophysical Observatory)

Mass Model with a Dark Matter Halo

- Assume spherical DM halo profile: $\rho_{DM} = \rho(r; \rho_c, r_c)$
- Add it together with the baryons: $V_c^2 = Y \star V_{\star}^2 + Y_g V_g^2 + V_{DM}^2(\rho_c, r_c)$

For spiral galaxies like the Milky Way, baryons dominate in the inner parts while DM is needed in the outer regions

 $V_c^2(R) = V_b^2(R) + V_{DM}^2(R) = const$

Why are rotation curves flat? Unclear! Fine-tuning issue: "Disk-halo conspiracy" (van Albada & Sancisi 1986)

Federico Lelli (Arcetri Astrophysical Observatory)

Cusp-Core Problem in Dwarf Galaxies

NFW profile (from N-body sims): $\rho_{DM}(r) = \frac{4\rho_c}{(r/r_c)(1+r/r_c)^2}$ Burkert profile (empirical): $= \frac{\rho_c}{(1 + r/r_c)[1 + (r/r_c)^2]}$ $ho_{DM}(r)$

Federico Lelli (Arcetri Astrophysical Observatory)

Possible Solutions to the Cusp-Core (Rotation Curve) Problem

 Baryonic physics: repeated, massive, and fast gas outflows due to stellar feedback produce non-adiabatic oscillations in the gravitational potential → transform DM cusp into a DM core

Baryon-modified DM halos

Federico Lelli (Arcetri Astrophysical Observatory)

Small Scales Problems for ACDM Cosmology

Possible Solutions to the Cusp-Core (Rotation Curve) Problem

- Baryonic physics: repeated, massive, and fast gas outflows due to stellar feedback produce non-adiabatic oscillations in the gravitational potential → transform DM cusp into a DM core
- 2. Self-interacting DM (SIDM): cores are created because of the "pressure" from DM self-interactions (WDM don't work!)

Constant-density cores in SIDM

Federico Lelli (Arcetri Astrophysical Observatory)

Small Scales Problems for ACDM Cosmology

Possible Solutions to the Cusp-Core (Rotation Curve) Problem

- Baryonic physics: repeated, massive, and fast gas outflows due to stellar feedback produce non-adiabatic oscillations in the gravitational potential → transform DM cusp into a DM core
- 2. Self-interacting DM (SIDM): cores are created because of the "pressure" from DM self-interactions (WDM don't work!)
- 3. Modified gravity (especially MOND): problem does NOT exist! → rotation curves are predicted from the baryonic distribution

3. Too-Big-To-Fail Problem (Problems 1+2 Reloaded)

Federico Lelli (Arcetri Astrophysical Observatory)

Too-Big-To-Fail Problem

Federico Lelli (Arcetri Astrophysical Observatory)

Too-Big-To-Fail Problem

Federico Lelli (Arcetri Astrophysical Observatory)

1. Baryonic physics: unclear whether it will work; stellar feedback should be inefficient in low-mass galaxies with $M_{\star} < 10^{6} M_{\odot}$ because they produced very few supernovae!

1. Baryonic physics: unclear whether it will work; stellar feedback should be inefficient in low-mass galaxies with $M_{\star} < 10^{6} M_{\odot}$ because they produced very few supernovae!

2. Self-interacting DM: cores are "naturally" created because of the "pressure" from DM self-interactions

1. Baryonic physics: unclear whether it will work; stellar feedback should be inefficient in low-mass galaxies with $M_{\star} < 10^{6} M_{\odot}$ because they produced very few supernovae!

2. Self-interacting DM: cores are "naturally" created because of the "pressure" from DM self-interactions

3. Modified gravity (especially MOND): problem does NOT exist! → circular velocity predicted from the baryonic content

Federico Lelli (Arcetri Astrophysical Observatory)

4. Planes of Satellites Problem (Satellites Phase-Space)

Federico Lelli (Arcetri Astrophysical Observatory)

Distribution & Kinematics of Satellites

Federico Lelli (Arcetri Astrophysical Observatory)

Small Scales Problems for ACDM Cosmology

Planes of Satellites in the Local Group

Federico Lelli (Arcetri Astrophysical Observatory)

Small Scales Problems for ACDM Cosmology

Plane of Satellites in the Cen-A Group

Federico Lelli (Arcetri Astrophysical Observatory)

 Baryonic physics: it should play NO role because the baryons should not affect the orbital properties of DM sub-halos (confirmed by comparing DM-only with hydro simulations)

- Baryonic physics: it should play NO role because the baryons should not affect the orbital properties of DM sub-halos (confirmed by comparing DM-only with hydro simulations)
- 2. Self-interacting DM: it cannot solve the problem because self-interaction affects only the inner parts of DM (sub)-halos

- Baryonic physics: it should play NO role because the baryons should not affect the orbital properties of DM sub-halos (confirmed by comparing DM-only with hydro simulations)
- 2. Self-interacting DM: it cannot solve the problem because self-interaction affects only the inner parts of DM (sub)-halos
- 3. Modified gravity: need to re-assess the whole problem of galaxy formation to study phase-space distr. of satellites (not done yet!)

5. Dynamical Regularities (Baryon-DM Coupling)

Federico Lelli (Arcetri Astrophysical Observatory)

Rotation Curves Shapes ↔ Baryonic Distribution

Lelli+(2022, Nature Astronomy)

Federico Lelli (Arcetri Astrophysical Observatory)

Rotation Curves Shapes ↔ Baryonic Distribution

Lelli+(2022, Nature Astronomy)

Federico Lelli (Arcetri Astrophysical Observatory)

Tully Fisher Relation: Mass versus Velocity

Federico Lelli (Arcetri Astrophysical Observatory)

Tully Fisher Relation: Mass versus Velocity

Newton's Law gives: $V^{4} = \frac{\pi^{2} G^{2}}{f_{b}^{2}} \Sigma_{b} M_{b}$ $f_{b} = M_{b} / M_{tot}$ $\Sigma_{b} = M_{b} / \pi R^{2}$

But no dependence on $\Sigma_{\rm b}$ is observed.

 $\rightarrow \Sigma_{\rm b}/f_{\rm b}^2 \sim {\rm const}$

Fine-tuning problem

Federico Lelli (Arcetri Astrophysical Observatory)

Abundance Matching → Curved BTFR?

Federico Lelli (Arcetri Astrophysical Observatory)

Small Scales Problems for ACDM Cosmology

Radial Acceleration Relation (RAR)

Federico Lelli (Arcetri Astrophysical Observatory)

Radial Acceleration Relation (RAR)

Observables:

- $g_{obs} \rightarrow$ centripetal acceleration from RCs
- $g_{bar} \rightarrow gravitational field from baryons$

Key Properties:

- Acceleration scale $a_{RAR} \sim 10^{-10} \,\mathrm{m/s^2}$
- Small scatter (consistent with obs. errors)
- No residual dependencies (radius, etc.)
- Baryon distribution ↔ Rotation Curve

Federico Lelli (Arcetri Astrophysical Observatory)

Small Scales Problems for ACDM Cosmology

Very different galaxies on the same RAR

Federico Lelli (Arcetri Astrophysical Observatory)

RAR sets the DM halo profiles

$$g_{DM} = g_{obs} - g_{bar} = F(g_{bar})$$
$$M_{DM}(R) = \frac{R^2}{G}F(g_{bar})$$

No freedom to fit arbitrary DM halos! "Cusp vs Core" is a symptom of a more serious general illness: Baryon-DM coupling at any radii!

Federico Lelli (Arcetri Astrophysical Observatory)

Small Scale ACDM Problems

- 1. Missing Satellites Problem
- 2. Cusp vs Core Problem
- 3. Too-Big-Too-Fail Problem

Baryonic physics in ΛCDM?WDM+SIDM ?Modified gravity (MOND)?

4. Planes of Satellites Problem \rightarrow ?

5. Dynamical Regularities → Baryon-DM interaction? MOND?